發(fā)布時(shí)間:2025-03-21 09:57:27來(lái)源:魔方綜合
綿陽(yáng)師資強(qiáng)的托福精講90分班?托福課程適合對(duì)托福缺乏明確認(rèn)識(shí),缺少用詞的靈活性及多樣性的學(xué)員學(xué)習(xí)。課程將由經(jīng)驗(yàn)豐富的老師進(jìn)行小班制教學(xué),確保每一位學(xué)員的進(jìn)步都可以得到量化。整個(gè)學(xué)習(xí)過(guò)程中,還有專業(yè)的助教老師進(jìn)行跟進(jìn)輔導(dǎo),實(shí)時(shí)反饋學(xué)習(xí)和生活情況,幫助學(xué)員強(qiáng)化托福的應(yīng)試能力。
綿陽(yáng)新航道托福精講90分班
【招生對(duì)象】
高中英語(yǔ)成績(jī)120分以上、托福成績(jī)75分-85分,目標(biāo)為托福90分及以上的同學(xué)
【課程特點(diǎn)】
1、三段式教學(xué),課程設(shè)計(jì)完全基于托福學(xué)習(xí)規(guī)律。2、新航道雅思教師任教,教師多年培訓(xùn)經(jīng)驗(yàn)。 3、課后VIP教師督學(xué),幫助學(xué)生查漏補(bǔ)缺。 4、TPO真題贈(zèng)送,全程作文批改。
【培訓(xùn)時(shí)長(zhǎng)】
72課時(shí)
【上課時(shí)間】
每周循環(huán)開(kāi)班 平時(shí)班:周一至周五 正課:9:00-12:00 13:00-16:00 輔導(dǎo)課:16:15-17:15 周末班:周六至周日 正課:9:00-12:00 13:00-16:00 輔導(dǎo)課:16:15-17:15
【培訓(xùn)教材】
預(yù)備階段:語(yǔ)法 《新航道托福內(nèi)部講義》 詞匯 《托福真詞匯》 基礎(chǔ)階段:基礎(chǔ)聽(tīng)力 《新托福聽(tīng)力真經(jīng)3》 基礎(chǔ)閱讀 《新托福閱讀真經(jīng)3》 基礎(chǔ)寫(xiě)作 《新托福寫(xiě)作真經(jīng)3》 基礎(chǔ)口語(yǔ) 《新托??谡Z(yǔ)真經(jīng)4》 階段:TPO內(nèi)部講義
托福綜合寫(xiě)作真題
以下是兩種實(shí)用模板及真題示例:
模板一(學(xué)術(shù)討論型)
"In academic discussions about [主題], contrasting perspectives often emerge. The reading passage presents [閱讀核心觀點(diǎn)], whereas the lecture challenges these arguments by [聽(tīng)力反駁方式]. This essay will examine their conflicting stances through three key aspects."
真題應(yīng)用(環(huán)境污染類)
"In academic discussions about ocean pollution mitigation, contrasting perspectives often emerge. The reading passage presents chemical absorption as the most viable solution, whereas the lecture challenges these arguments by highlighting long-term ecological risks. This essay will examine their conflicting stances through three key aspects."
模板二(現(xiàn)象分析型)
"The ongoing debate surrounding [現(xiàn)象] has sparked divided opinions. While the article advocates [閱讀立場(chǎng)] through [論據(jù)特征], the speaker systematically refutes these claims using [聽(tīng)力論據(jù)特征]. Three specific contradictions reveal the fundamental disagreement between the two sources."
真題應(yīng)用(科技影響類)
"The ongoing debate surrounding AI-driven healthcare has sparked divided opinions. While the article advocates algorithm-based diagnosis through cost-effectiveness arguments, the speaker systematically refutes these claims using case studies of misdiagnosis. Three specific contradictions reveal the fundamental disagreement between the two sources."